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Culp, Robert Dudley (Ph.D., Aerospace Engineering Sciences)

A Necessary Condition and a Corner Condition

for Optimal Coplanar Orbit Transfer

Thesis directed by Professor Adolf Busemann

The problem considered is that of determining the means of

orbit transfer in a Newtonian gravitational field which minimizes the

characteristic velocity of the maneuver. The available thrust

magnitude is assumed to be unlimited. The time duration of the

maneuver is not considered. This reslxicts the analysis to the

so-called time open problem, in which case only elliptical transfers

between elliptical orbits need be considered. All motion is restricted

to a plane. The sense of circulation in the orbit is not restricted.

This study is based on the approach proposed by Professor

Adolf Busemann in the annual Ludwig Prandtl Memorial Lecture in

Vienna, in April, 1965. This approach utilizes a configuration

space of coplanar orbits which is particularly convenient for this

problem. In this configuration space a metric body is constructed

with which to measure the relative displacement of an orbit caused

by infinitesimal impulses applied at all positions of the orbit and



in every direction in the plane. This metric body is analyzed to

obtain properties of the minimal paths of this space. The infini-

tesimal impulses can be used to construct either finite impulses

or continuous thrust maneuvers o

T.his analysis yields a necessary condition which must be

satisfied in order that a maneuver be optimal. In addition, this

study produces a corner condition which must be satisfied at the

junction of two maneuvers in order that the entire maneuver be

optima]. It is shown that optimal maneuvers are nearly always

composed of fi.nite impulses. Continuous thrust optlmals are very

rare special cases and are treated only briefly. A method is given

for generating multiple impulse trajectories which satisfy both the

necessary condition and the corner condition, and an example of

such constr-action is displayed. The analysis is completed

numerically and the results are presented graphically.

This abstract is approved as to form and content. I recommend its
public;at!on.

Signed __ /_--_-_-Z_-____

Faculty member in charge of dissertation
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Io INTRODUCTION
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a) The Basic Problem

In the aerospace engineering sciences there is an important

problem of basic orbital transfer which, even with the obvious

simplifications and strong current interest, has only been partially

investigated. In general, this problem is that of transferring a space

vehicle, which is in orbit about a gravitational body, from its given

orbit to a second orbit and performing the transfer in some optimum

sense. The model which suggests itself is an attractive central

force field with the magnitude of the force inversely proportional to

the square of the distance from the center of attraction. This is the

well-known Newtonian, or inverse square, gravitational field.

The criterion of optimization logically might be minimization

of fuel expenditure, since in a simple model of the space vehicle fuel

expenditure provides a direct measure of the cost of a maneuver in

terms of weight or bulk. A characteristic velocity can be defined

which furnishes a direct measure of fuel expenditure in terms of a

theoretical maximum achievable velocity change for a given expendi-

ture of propellent. For a simple rocket traveling in a straight line

in the absence of any external force, the differential expression

for the change of velocity effected by the use of a differential

amount of propellent, dm, is

dm

dv .... c (i)
m
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where m is the instantaneous mass of the rocket and unexpended

fuel, and c is the instantaneous exhaust velocity of the propellent.

The characteristic, or latent, velocity may thus be defined as

m t

fo f£0 = c dm =
m

m t
o

T dt (2)

where T is the instantaneous magnitude of the acceleration due to

thrust.

If the thrust magnitude is unlimited then the velocity change

can be assumed to take place discontinuously, and the characteristic

velocity becomes, as expected, the magnitude of the impulsive

velocity change.

The problem thus stated is of classical merit, having been

1
treated as early as 1925 by Hohmann. The problem is that of

determining the means of orbital transfer in a Newtonian gravitational

field which minimizes the characteristic velocity.



b) Restrictions and Assumptions

It is assumed here that the available thrust magnitude is

unlimited. As is shown in this study the practical result of tWis

assumption is the emergence of finite impulsive velocity changes as

the optimal maneuvers in nearly all cases.

It has been shown by Contensou 4 Lawden 5

This is not unexpected.

6,7
, and several others

that the requirements for an optimal trajectory using less than maxi-

mum thrust are so stringent as to render such solutions unrealistic.

With the thrust unlimited the analysis can be carried out using

infinitesimal impulses to construct both finite impulses and contin-

uous thrust maneuvers. Thus, when the thrust is unlimited only

impulsive velocity changes need be considered in order to determine

the optimal trajectories, be they impulsive or continuous thrust.

Even in the case where an upper limit is placed on the thrust magni-

tude, knowledge of the optimal unlimited thrust maneuvers provides

a powerful tool for finding the restricted thrust optimal trajec -

8,9,19
tories

It is assumed that time is eliminated from the problem. Then

only this so-called time open problem is considered. The results of

this assumption are far-reaching. Basically, this assumption

eliminates any necessity for considering hyperbolic trajectories

either as initial or final trajectories, or as arcs of a minimum fuel

trajectory between given trajectories. Time open transfer between
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two trajectories of an escape nature (either hyperbolic or parabolic

trajectories) can always be effected using only infinitesimal

impulses, and time open transfer between an elliptical orbit and

either an hyperbolic or a parabolic orbit can be accomplished by an

impulse equal to the minimum impulse required for escape from the

elliptical orbit. 10 Further, Marcha111 has shown that in the time

open case an hyperbolic arc cannot form part of an optimal trajectory.

Thus, the time open transfer problem admits only elliptical

transfer between elliptical orbits as an area of interest. Between

any two elliptical orbits there is the upper bound on characteristic

velocity requirements provided by the competition in the large from

the four impulse maneuver with a characteristic velocity equal to

the sum of the minimum impulses required for escape from the two

10,11
orbits . This provides an easy comparison test for all proposed

maneuvers in this problem.

Finally, it is assumed here that all motion takes place in a

plane passing through the center of attraction. This restriction to

coplanar orbits reduces the number of degrees of freedom of the

orbits from five to three,



c) The Configuration Space

With the restrictions thus placed on this study, the

objectives sought are the minimum characteristic velocity, impulsive,

coplanar, elliptical, time open maneuvers in a Newtonian gravita-

tional field. In a Newtonian gravitational field the trajectories are

Keplerian. That is, the trajectories are conic sections. It will be

advantageous to construct a configuration space which preserves,

and even enhances, this property of the trajectorles. This configur-

ation space was introduced by Professor Adol_ Busemann in the annual

Ludwig Prandtl Memorial Lecture in Vienna, in April, 1965 z.

This configuration space of coplanar elliptical orbits is

defined in the following manner. It was previously noted that there

are three degrees of freedom for these coplanar orbite. Therefore, the

space will be three dimensional.

focus, the center of attraction.

All of the ellipses have one common

The origin of the orbit space is

taken as this common focus. In the plane of the orbits orthogonal

axes are taken along which are measured the coordinates of the

second focus of every ellipse. Thus, two of the coordinates of the

configuration space are given by the vector from the common focus

to the second focus of the ellipse, sometimes called the vacant

focus. This is a two vector lying in the plane of the orbits. A

right-hand orthogonal system is formed by taking as _ third

coordinate normal to the plane of the orbits the length of the major



axis of the ellipse, _,.

The major axis of an ellipse must be at least as long as the

distance between its loci. Therefore, this configuration space of

coplanar elliptical orbits is confined by the cone of revolution about

the 4, axis with semivertex angle 45 ° , in which _ > f. This cone

is labelled y (Figure 1.). Points on the cone _ correspond to

degenerate ellipses with _ = f and a minor axis of zero length.

Points on the _ axis correspond to circles. Since the eccentricity

e is given by f/t, an ellipse of eccentricity e must lie on a

cone of revolution about the

That is_ the larger the angle

is the eccentricity of ellipse

-1
axis with semivertex angle tan e.

OE makes with the 6 axis, the larger

E.

In order to obtain other useful properties of this orbit space

and to become more familiar with the relations among ellipses under

this representation, one should note that if two ellipses intersect

then the following inequality must hold.

I(_,'- r) - (_-r) I < I> - f-I

or (3)

This is obvious from Figure 2o The existence of the triangle formed

by the point of intersection and the two second loci of the ellipses

provides this inequality. If the two ellipses are tangent at a point,

then the two flight path angles, y and y', are equal and the



triangle degenerates to a straight line. Thus, the equality in (3)

holds in the case of tangency.

Then the equality in (3) states that if any ellipse E' is

tangent to a given ellipse E, then in this configuration space E'

must lie on the surface of the cone of revolution with axis parallel

to the t axis, semivertex angle of 45 ° , and vertex at the point E.

The inequality in (3) states that a point representing an intersecting

ellipse must lie outside this cone. It follows that points interior to

the cone represent ellipses which do not intersect E. Since those

points inside the upper half cone (above the point E) have major

axes longer than that of E, these ellipses lie wholly outside E.

Similarly, points inside the lower half cone represent ellipses wholly

contained inside the ellipse E.

Therefore, in this configuration space of coplanar elliptical

orbits every orbit has an associated cone which neatly divides the

remaining ellipses of the space into accessible and inaccessible

orbits. Those orbits which intersect or are tangent to the original

orbit are immediately accessible via impulsive velocity change

without recourse to an intermediate orbit, Those orbits which do not

touch the original orbit are inaccessible in the sense that an

intermediate orbit is necessary in order to reach them, (Figure 3).

From the construction of this space it is apparent that the

plane of the second focus vectors is identical to the physical

plane of the orbit. The orbit may be drawn on this plane to



further aid in visualization of certain features of the space. Physical

constructions in the orbital plane and representations in the three

dimensional configuration space may be completely interwoven. In

particular, this feature is useful in determining the set of all

ellipses in the plane which pass through a given point in space. For

a point P of the physical plane, it is evident that the ellipse passing

through P which has the shortest major axis is the degenerate

ellipse with second focus at P, and 6 equal to f. It is also

apparent that any ellipse passes through

tangent at P to this degenerate ellipse.

P if and only if it is

From the previous

discussion, all ellipses tangent to a given ellipse are represented

in this configuration space by the points lying on the associated

cone of the given ellipse. Points on the upper half of the associated

cone are ellipses which are externally tangent to the given ellipse.

The conclusion is that in this configuration space the locus

of ellipses which pass through a given point P in the physical plane

is the upper half of the associated cone of the degenerate ellipse

with second focus at P (Figure 4).

This result may also be established in the following manner.

For an otherwise arbitrary elliptical orbit E which passes through

the point P, the distance from its second focus F to P is 6- r,

where r is the distance of P from the origin. On the verticals

rising from P and F the points D and G are at a distance r
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from the physical plane (Figure 5).

distance

The line DG is perpendicular to both verticals.

makes an angle of 45 ° with the extension of PD.

E was arbitrary aside from its passing through P,

The point E, of course, is a

above F. Then DG is of length _,- r, as is EG.

DETherefore,

Since the ellipse

it follows that

any ellipse which passes through P must be represented in the

configuration space on the upper half cone of revolution with vertex

a distance r above P, semivertex angle of 45 ° , and axis of

revolution the vertical rising from P. This cone is just the

associated cone of the degenerate ellipse with second focus at P.

This is precisely the result obtained above.

This property leads immediately to another useful property

of the configuration space. The point E representing the ellipse

in configuration space must lie on every half cone representing all

ellipses passing through a point of the ellipse E. This shows that

the intersection of the associated cone of E with the configuration

space boundary cone 52, projects on the physical plane as the

physical orbit E. Another way of looking at this is by noting that

at any point of the ellipse E, the degenerate ellipse with second

focus at that point is tangent to the original orbit. Therefore, the

points in the configuration space representing these degenerate

ellipses lie both on the associated cone of E and the boundary

cone 7. This confirms the previous statement.
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A discussion of the properties of this configuration space,

the powerful visualization of orbital problems which it provides,

the advantages of the fact that in this space orbital problems remain

problems of conics, and the use of this configuration space in

approaching a specific problem can be found in reference 12.
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Figure i. Busemann's configuration space of coplanar orbits.
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Figure 2. Intersection of two orbits, drawn in the physical plane.
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Figure 3. The associated cone of an orbit dividing the configuration

space into accessible and inaccessible regions.
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Figure 40 The locus in configuration space of orbits through a

given point P.
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Figure 5. Element relations for an orbit through a given point P.
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II. THEORY AND PROCEDURE
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a) General Approach

The problem under consideration is the time open problem

of coplanar orbital transfer by impulsive velocity change. The

property of the maneuver to be optimized is the characteristic

velocity. In the case of a single impulsive velocity change the

characteristic velocity is simply the magnitude of the velocity

change vector.

The analysis which is used in this study results in the

establishment of a necessary condition which must be satisfied

by a proposed impulsive maneuver in order that it be an optimal

maneuver. Also obtained is a corner condition which must be

satisfied when two impulses are joined if the resulting multiple

impulse maneuver is to be o_timal, The approach used here is

that set forth by Professor Busemann in his Prandtl lecture 2.

The basic idea is to consider the variation in the orbital

parameters caused by an infinitesimal impulsive velocity change

of magnitude dv. Since the problem is time open no preference

is given to any position on the original orbit. At every position

around the orbit the effect of applying the impulse dv in every

direction of the plane is considered. In the configuration space

the result is a surface of orbits which are attainable from the

original orbit through an impulsive change of velocity of

magnitude dv. This surface forms a body in the three dimensional



configuration space which will be referred to as the metric body

of the space. It provides a local measure of the relative effective-

ness of all the available maneuvers which are admissable under

the assumptions made.

This metric body is a continuous function of the initial

ellipse. Therefore, for initial ellipses restricted to a sufficiently

small neighborhood of a given ellipse the metric body will be in

every respect as nearly identical as desired to the metric body

of the given ellipse. Thus, only those portions of the metric body

which are convex can possibly be optimal. Any maneuver which

ends with an orbit represented by a point on a concave portion of

the metric body can be replaced by a linear combination of two

maneuvers from the convex portions of the body with a total

characteristic velocity smaller than that of the original maneuver

(Figure 6).

In this manner the original metric body is replaced by an

improved metric body consisting of the convex portions of the

original metric body but with the concave portions covered by a

developable surface. This developable surface is formed by the

bitangential lines between sets of two points of the body so

situated that the bitangent is completely outside the body. This

follows from the meaning of convex and concave portions of the

body. A body is convex in case it wholly contains the straight

19
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line joining any two of its points. The metric body is rendered

convex by including in it all points lying on the straight line

joining any two points of the original metric body. Only those

points on the surface of the improved metric body represent

possibly optimal maneuvers. This construction is equivalent to

the construction by bitangential lines mentioned first. The

bitangential line construction breaks down where the original

metric body does not have a well-defined tangent plane. Then

the second, more basic construction must be used. It will be seen

that for this problem these exceptional cases can be handled quite

simply.

The resulting body is entirely convex. Thus, the surface of

this improved metric body represents the maximum local progress

in any direction in configuration space which can be achieved from

a given orbit through the

characteristic velocity,

maneuvers are allowed.

use of a fixed infinitesimal amount of

dv. For this optimum use only certain

These are those maneuvers represented by

points on the surface of the improved metric body which are also

points on the surface of the original metric body. Points which

are on the surfaces of both the improved metric body and the original

metric body will be said to form the convex portion of the metric

body. Therefore, the necessary condition for optimal coplanar

orbital transfer which is obtained through this analysis is that a
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maneuver must be represented throughout by points on the convex

portion of the local metric body of the configuration space.

An alternative way of stating this can be found by observing

that a coplanar impulsive maneuver is represented in the configur-

ation space by an arc. This is evident since the instantaneous

velocity vector and position vector completely determine the

elliptical orbit of the vehicle. During the impulse, the position

is constant and the velocity varies continuously. Therefore, the

point representing the orbit as the impulse is applied describes

an arc in configuration space. The arc in configuration space

representing a continuous thrust maneuver is made by joining the

arcs of the infinitesimal impulses which form it. That is, the arc

of a continuous thrust, or intermediate thrust maneuver is generated

by the continuous variation of the velocity vector and the position

in the plane.

In this light, the necessary condition of this study can be

stated as follows. A necessary condition for an optimal coplanar

orbital maneuver is that in this configuration space the arc

representing this maneuver must always pierce the metric body

through its convex portions as this metric body moves along the

arc.
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bitangent

concave

convex

initial point

convex

locus of points attainable from

initial point at a fixed cost dv

Figure 6. An arbitrary metric body showing the concave portion

replaced by an external bitangent.



23

b) The Metric Body

The application of the impulse dv is controlled by two

variables. One specifies the position on the original orbit at which

the impulse is applied, the other specifies the direction of the

impulse, subject to the restriction that the impulse must be in the

plane of motion. It is convenient for computational reasons to use

the intrinsic parameters of the problem for this purpose. Used for

specifying the position on the ellipse is the angle 6 between the

line from the second focus F to the common focus O, and the

line from F to the position P on the ellipse (Figure 7). The

angle is measured positive from periapsis in the direction of the

velocity. The velocity around the orbit is assumed to be in a

right-hand sense about the

is measured by the angle

_, axis. The direction of the impulse

between the velocity vector and the

impulse vector, measured positive from the velocity vector outward

away from the orbit.

For a particular impulse with given 6 and _, the resulting

point on the metric body may be found by considering the movement

F caused by the impulse. From the energyof the second focus

integral

2
V ---- 2_ 1,1r ¢ (4)
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comes

2v -- r
v2r (5)

2W

Since

dv cos

L is affected by only the tangential velocity increment,

, the change in 4, is given by

vr 2
d _,,, dv cos _ (6)

I- 2_J

Using (4) one obtains

v_ z
d_ t -- dv cos (7)

This is the magnitude of the component of df parallel to PF.

I_'I cos # = d_ (8)

The velocity increment normal to the flight path, dv sin _ ,

does not affect L since it does not change the energy of the orbit.

It simply rotates the position of F on a circle of radius _, - r

centered at the vehicle position in the orbit.

is twice the change in the flight path angle,

magnitude of the vector change in

by

Id'_'lsin _/ ,. 2dy (_,- r)

I

f perpendicular to

The angle of rotation

d y, Therefore, the

PF is given

(9)

Using
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dv
d y =- sin

V
(lO)

and again resorting to (4), one may write

v_, _
dv sin

I dfl sin _ =

v2t
l+--

2U

or

(ii)

Id-Tl sin _ - v6 dv sin
_r

The locus of f as _ varies from 0 to 2n, and thus as the

impulse dv makes a full circle, is the ellipse centered at F

(dr),' [2dy(t - r)]2

t---_[vt'dv]' + [__vtdv]'

- 1 (12)

For a new coordinate system based on these changes in the second

focus of the ellipse, it is convenient to define

q

.q m I df I sin

(13)

Then equation (12) may be written

_2 _2

v62 v6 dv] _

= 1 (14)

The orientation of this ellipse is given by the angle 6. By
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the law of cosines (Figure 7) the following holds.

1 + _ __ (15)

From (15) comes

v z $ $2 _ fz (16)

2_ (_'+ _=)-2f_ cos

which leads to

v',," F_,_' (,,,' - !,,=) , _i,
=L¢ + fz . 2f¢cos 6

(17)

Substituting (17) into the equations (7) and (11) and using (8)

and the new coordinates (13), one obtains the coordinates _ and

of points on the metric body generated at one position of the given

orbit. In terms of the intrinsic parameters _ and 6 these

coordinates are

dv _ 2_s (_= . fi)

cos
cos _/

ill
dv [2¢s(¢1 _ fi)] ,[¢1 + fi _ 2f¢ cos 63

= _ _(_=-f_ cos 6)

(18)
1/2

sin

A more frequently used notation is that of replacing

eccentricity e, given by f/¢. In terms of e (18) is

i/,

= _ l+e" 2ecos 5

f by the

(19)
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dv ill ]1/iF243 (1 - e2)] [1 + e 2 - 2e cos 6
= _ 2(1 - e cos 6) sin

(19)

Since the change in the _ direction is seen to be the change

in the length of the major axis from equations (8) and (13), the

vertical displacement of the point E in configuration space will be

equal to _, Therefore, this ellipse representing the points of the

metric body generated at one position on a given orbit will appear

in configuration space with its plane tilted at 45 ° to the physical

plane. Because its major axis is generated by forward and rearward

tangential thrusts, this major axis will coincide with a generator of

the associated cone of E (Figure 8).

/_.n ellipse on the metric body is produced for every different

value of 6o If the original orbit is circular, e equal to zero, then

all of the ellipses are identical, and the metric body is produced by

rotating an ellipse about an axis through its center at an angle of

45 °, This metric body and the improved metric body which has been

made convex hy a developable surface are shown in Figure 9. In

this case of a circular original orbit the only unforbidden maneuvers

are tangential imulses represented by the rims of the can-shaped

improved metric.

If the original orbit is elliptical, then the size and shape of

the ellipses which make up the metric body vary as 6 varies.
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Figures i0 and 11 serve to illustrate the general character of this

metric body. The dotted line in Figure i0 and the solid inner line

in Figure ii show where the ends of the major axes of these ellipses

lie on the associated cone. These are the points generated by

tangential maneuvers. It is apparent that, except at the apses

with 6 equal to 0 or 180 ° , the metric body rises upward and outward

from these tangential points. Thus, these points lie in a concave

portion of the metric body and cannot represent optimal maneuvers.

13,14
This agrees with the fact which has been shown previously

that in general the cotangential orbit transfer is nonoptimal. This

result is stronger in that it shows that, except where the velocity

vector is horizontal, no tangential maneuver can be optimal, not

even a single impulse transfer,

The improved metric body made by covering the metric body

with a developable surface is shown in Figure 12, Only the narrow

edges around the top and bottom remain from the original metric

body. The points on these lips represent maneuvers which satisfy

the necessary condition for an optimal maneuver, At the apses of

an elliptical orbit and all around a circular orbit the only

maneuvers which satisfy this condition are the tangential impulses.

That is, when the velocity vector is horizontal the only possible

optimal maneuvers are tangential maneuvers. This agrees with the

previously established result that the Hohmann type of maneuver
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is an absolute optimum 15'16"

Figure 12 shows that there are three separate developable

surfaces which cover concave portions of the metric body. There is

the side surface, or mantle, which wraps around the body covering

most of the accessible directions in configuration space, and there

are top and bottom surfaces which completely cover the inaccessible

directions inside the associated cone. The only convex portions

of the original metric body are those lips which emerge between

these developable surfaCeSo It is evident that these represent

impulses which are nearer tangential than normal to the velocity

vector. The boundaries of these lips will be calculated in the

following sections of this analysis in order to provide the desired

necessary condition for optimal orbit transfer.
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Figure 8. The variation of an orbit possible from one fixed position P.
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Figure i0. The side view of the original metric body.
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8=0 °

X

y E

6 = 180 ° e > 0

Figure 11. The top view of the original metric body, top half only.
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bitangents of 1the develop-
able surfaces

top

/

J/!
J

/
/

mantle convex

portions

bottom

e>O

Figure 12. The improved metric body showing the convex portions and

the developable surfaces.
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c) The Tangent Planes

The first step in calculating the boundaries between the

developable surfaces and the lips, the convex portions, is to

determine the tangent planes of the original metric body. For this

purpose it is convenient to establish a coordinate system in the

metric body. This coordinate system is depicted in Figure 13.

The origin is E, the point in configuration space representing the

i

given ellipseo The x axis is taken parallel to the vector f. The

z axis is parallel to the t axis of configuration space. The y axis

is chosen so as to complete a rlght-hand orthogonal xyz coordinate

system o

It should be observed that the z coordinate of a point on the

metric body is equal to de, the change in the length of the major

axiso In the preceding section it was established that d¢ is equal

to the coordinate _. From the projection of the xy coordinates onto

the _ T] coordinates in Figure 14, the relation between the two sets

of coordinates is readily evident_ From these observations are

found the parametric equations of the surface of the metric body.

x = _ cos 6 + T] sin 6

y= _ sin5 - _ cos 6 (20)

z--_
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Thus, the surface of the metric body is given in terms of

the intrinsic parameters _ and 6 by

_-(4,_)- x(_,8)T+ y(_,_)_"+ z(_,6)?_

= (_ cos 6 + T] sin 6)'_ (21)

+ (_ sin 6 - n cos 6)_

+_

where

and

_',_,_ are unit vectors in the x,y,z directions respectively

and _ are found in terms of _ and 6 from equations (19).

A vector normal to the surface of the metric body is given by

the vector cross product

n = x_-_
(22)

m

The only place n is the null vector is where the two vector

derivatives on the right-hand side are aligned, This occurs only

where both @ is equal to zero, that is tangential impulse, and

6 is such that the velocity vector of the orbit is horizontal. It

will be seen that this causes no problem since in these cases the

information sought is quite obvious o

Written out fully in terms of @ and 6, the quantities of

interest are as follows°
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(_,6) [ cos _ cos s
R(l-e _)u2 - L z z ]+ 2(1- e cos 6) sin_sin6 "_

+
,cos _, sin 6 Z 1Z 2(1 - e cos 6) sin _ cos 6 j"

a._.£__ 1
_ R(1 - e_) u2 Z 6 sin $ Cos 6]" 2(I - e cos 6)c°s _ sin - Z ]

Z sin _ sin 6.]+ - 2(1- e cos 6) cos _ cos 6 - Z

sin___._I _ (24)+ - Z

_6 R(I- e 2)lfz

+

/

tcos [ n ecos0 -T (I÷ i'

[I [(z'sln_ 2(I- e cos 6)Z'

• I- (l-ecos 6)

cos 6)+ e sin 2 6.

+ sin

[1 esin'0]+ os_ _ (cos6- z' )

I_. sin 6 [(1-e cos 6)Z Z2 -

• (1 -

e cos 6.

Z 2

i - e cos 6

(25)
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with
2 _3 (dv)Z

R _ -

Z 2 - (1 +e 2 - 2e cos 6)

m

For a given ¢ and 6, the vector P to the corresponding

point Q on the surface of the metric body is found from equation

(23), and a vector n normal to this surface at the point Q is

produced by equation (22), where the derivatives called for are

determined by equations (24) and (25). The tangent plane at Q

is found as follows, If p' is a vector to any other point of the

tangent plane at Q then the projections of p' and p on n are

equal,

m u

p • n = p' , n (26)

Therefore, the equation of the tangent plane is

ni n__n_L_ n___qz__ _x + y + z -1 (27)

p,n p "n p "n

The plane is completely defined by the three constants which are the

coefficients of x,y, and zin (27). These constants can be seen to

be the reciprocals of the intercepts by the tangent plane of the x, y,

and z axes, respectively. With the intercepts of the axes by the

tangent plane labelled Xo, Yo' Zo' one may write
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cl = n I 1
_ X

P.n o

c2 _- n2 = _ (28)

P o n Yo

C3
1

m _ Z

p'n o

These three constants are used to specify the tangent planes

of the metric body. These constants are well-suited for this purpose

since, while the tangent planes are frequently parallel to one or

more of the coordinate axes, they do not approach arbitrarily close

to the origin. Thus, these three constants will range through values

in a finite interval about zero, As will be seen, this interval has a

length on the order of the size of R, defined after equation (25).

The points of the top half of the metric body, for which z

is positive, can be put into congruence with the points of the

bottom half of the body, for which z is negative, by a rotation of

180 degrees about the y axiso In addition, the metric body is

symmetric with respect to the xz plane. The entire body can then

be generated by the quarter of the body in the region where y and

z are positive. From this quarter the quarter in the region where

y is negative and z is positive is generated by the mapping

(x, y, z) -_ (x, -y, z) (29)
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This completes the top half of the body. From this top half,

the bottom half is constructed by mapping

(x, y, z) -' (-x, y, -z) , (30)
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7

y

0

Figure 13. The coordinate system in the metric body.
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o.O°

X

(projected)

y

(projected)

Figure 14. The relation between _] and xy coordinate systems.
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d) The Bitangents

The bitangents which form the developable surfaces which

bridge the concave portions of the metric body are made by planes

which are tangent to the metric body at two different points. The

bltangent is the line in this plane Joining the points of tangency.

In some cases this approach to the developable surface

must be replaced by a more basic approach as discussed previously.

These cases occur at points corresponding to both an horizontal

velocity vector and a tangential impulse. At such points the

metric body does not have a well-defined tangent plane. These

points correspond only to tangential impulses and at the apses of

elliptical orbits or around the entire orbit if it is circular. The

elements of the developable surface in the latter case are depicted

in Figure 9, For the elliptical orbits these points of tangential

thrust at the apses combine with one another (Figure 15) to form

the subgroup of the Hohmann type of maneuvers° It is evident

that these cases present no problem, but are actually simpler to

handle than the general points. For these cases use of the

definition of convexity of the body (the body is convex if it contains

all the points on the straight line between any two of its points)

leads to the simple constructions shown.

These simple connections lie in the developable surfaces

of the metric body. To find the bltangents which make up the rest
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of the developable surfaces, one must find sets of two different

m m

points given by pl and p2 which have the same tangent plane.

m

As p varies generating the surface of the metric body, the constants

used to define the tangent plane sweep out a surface in the three

space ci, c2, c3. The parameters of this surface are ¢ and 6.

The bltangents are represented by points of this surface to which

correspond two distinct sets of _/

where this surface in c I, c_, cs

and 6. Thus, what is sought is

space intersects itself.

The points of self-intersection are found by slicing the

space with a plane and examining the trace of the surface on the

plane for intersections. The cross sections selected are planes

of constant c 2. This choice is made in vlew of the particularly

predictable behavior of the y intercept of the tangent planes.

For the quarter of the body with y and z both positive the tangent

planes which produce the developable surface forming the mantle

have c 2 which begins at zero for 6 equal to zero, increases to a

finite maximum, and then decreases again to zero at 8 equal to

180 degrees. In this same quarter the tangent planes which produce

the top developable surface have cs which begin at zero, corre-

sponding to the simple connection between 6 equal to zero and

180 degrees lying in the xz plane, and gradually increasing to a

finite maximum. Thus, pertinent planes of constant c s can be

selected quite easily.
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As was noted in the preceding section, properties of the entire

body can be obtained from knowledge of the body in the single quarter

where y and z are positive by using (29) and (30). It is only

necessary, therefore, to compute the half of the top and the half of

the mantle where y is positive, In the part of any of the develop-

abIe surfaces which has y positive a bitangent connecting (41,61)

with (42, 82) has an image bitangent with y negative connecting

(_I" 6•'i)with (42',6'). The image points are given by the

relations corresponding to (29):

! _ -- 4

5! _ -- 6

(31)

This gives the other half of the top developable surface.

Similarly, a point in the top half of the body given by (4,5)

has a corresponding point in the bottom half given by (4' ,5 ') found

through the relations corresponding to (30):

4' = 180 ° - 4

! _ -- 6

(32)

Thus, a bitangent in the top developable surface yields a corre-

sponding bitangent in the bottom surface.

A combination of (31) and (32) is used to find the bitangents



47

which form the mantle. Equation (32) is employed to find the

bitangents of the half of the mantle with y positive, and equation

(31) generates the other half,
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im

z

original

metric

body

E

X

soclated cone

--Improved metric body

e = .2

Figure 15. The trace in the xz plane of the metric bodies.
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e) Method of Computation

As discussed in the previous section, there is a surface

in the three space cz .cm.cs which represents the tangent planes

of the metric body, Determining the bitangents is equivalent to

finding the points where this surface intersects itself, These

self-intersections are found by slicing the space by planes of

constant cm, which means constant Yo'

This is accomplished numerically on the high speed digital

computer (an IBM 7044) of the Graduate School Computing Center

The details of the computation areof the University of Colorado,

as follows.

1. Only the edge in the quarter where y and z are

positive is calculated. Thus, the range of 8 is

0 to 180 degrees, and the range of _ is 0 to 90

degrees.

2o A fixed value of ca is given. This determines the

plane used to slice the space.

3. Next, 6 is held fixed while _ varies until the given

value of cs is acquired to within +_ .0000001 in

units of R(I - ea)I/2o This represents a point of

the trace of this surface in the given c2 plane.

4. The trace is completed by repeating step 3 for different

values of 6 from 0 to 180 degrees. The increments
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in 6 vary from 0.25 to 2 degrees, with the differing

step size suggested by the need for uniform accuracy.

5. Straight line interpolation between points of the trace

is used to find the self-intersections which yield

the bitangents of the top developable surface.

6. When an intersection is found by step 5, additional

points are calculated by step 3 to give the desired

accuracy. Extremely high accuracy is obtained with

only one iteration. Frequently this accuracy extends

nearly to the eight place accuracy of the single precision

trigonometric functions of the computer,

7. To find the bitangents which form the mantle, the

trace obtained in step 4 is overlaid by the trace

obtained from it by substituting -x and -z for x

and Zo That is, transformations (30) and (32) are

used, The intersections are then found as in steps

5 and 6.
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f) Variation of Elements

From Figure 7 it can be observed that, for an impulse the

direction and position of which are defined by _ and 6, the

change in f normal to f is given by

m m

df 3. f = _ cos 5 -_ sin6 (33)

Also, it is apparent that the change in

change in 8.

% is the negative of the

de .-d8 (34)

The change in _ is

d_ ,, _ sin 5 - _] cos 6f (35)

Therefore, the change in 8 is

d8 = qc°s 6 - _ sin 8
f (36)

Similarly, the change in f in the direction f is given by

_'' df-- = df (37)

df = _ sin6 + _ cos 5 (38)

Now, using equations (19) for _ and _ in equations (8) and (13)

for d_,, equations (36) and (38) for d8 and df, and defining a
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new independent variable u by

u = v (39)

where L is some reference unit of length, one obtains the equations

for the variation of the elements in the form:

d4, _ 4, [24, (1-e =)
du [l+e _'-2e cos 6

i/=

cos @ (40)

du - e l+e 2 - 2e cos 6 (l_e c_s 6) sin @ cos 6 -

- COS _ sin 6] (41)

df
_-- 4,

du 24,(l-e z) ]I/= II+e=-2e cos 8
l+e'-2e cos 6J L" 2(l_ec_ss 6)

sin _ sin 8 +

+ cos $ COS 8 ] (42)

Equation (42)can conveniently be replaced, since e is f/4,, by

de[,,, ]'I'[1+e'-2eoos0du - l+e = -2e cos 6 2(l-e cos 6)
sin _ sin 6 +

+ cos _ (cos 6 - e)] (43)

The angles 8 and 6 can be related (Figure 7) by using

equation (16) and a similar expression also obtained from the law

of cosines.
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v_.¢, 1 + e 2 + 2e cos %

2_ - 1 - e _
(44)

Equating (16) and (44) gives a relation between cos 0 and cos 6.

1 [ (!-.el) 2 .. (l+e_)l (45)cos e - 2e 1 + e z - 2e cos

The law of sines relates sin O and sin 8,

_-r
sin 0 = sin 6 (46)

r

Using the energy integral (4) and equation (16) one obtains

, (1 - e a) , (47)
sin e = sin6 1 +e 2 - 2e cos 6

Equations (45) and (47) can be inverted to give expressions for

sin6 and cos 6,

(,1,- e2),, (48)
sin6 = sine 1 + e z + 2e cos

1 [ l+e2_ (1-,eZ)Z ]cos 5 = 2--e 1 + e z +2e cos O (49)

The flight path angle y is given by either of the following.

e sin O
tan y =

i + e cos 8

(5O)

e sin5
tan y =

1 - e cos 5
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During an impulsive velocity change the angles

remain constant (Figure 7). These are given by

8* and _*

8" = e + B (51)

** = , + y (52)

For this reason it is practical to use _* in place of @ as the more

natural control parameter, Equation (51) for %* has already been

used in obtaining (34),

The equations for the variation of the elements of the orbit,

(40), (41), (42), and (43), along with equations (48), (49), (50),

and (52) provide a complete description of the effects of an impulsive

change of velocity, These equations are used to determine the

magnitude an impulse can have while continuing to satisfy the

necessary condition for optimal impulse,



g) Multiple Impulse Trajectories

Multiple impulse trajectories made up of impulses which

everywhere satisfy the necessary condition and which are joined in

an optimal fashion can be generated by using the equations for the

variation of elements in the preceding section. This generation

is accomplished in the following manner.

i. The initial orbit is fixed in configuration space by

e, 6, and B, or what is the same, by 6 and T.

2. The initial impulse is fixed in position and

direction by 8" and _*. This position and

direction must be such that initially this impulse

satisfies the necessary condition for optimality.

That is, the point representing it in configuration

space must lie on a convex portion of the metric

body.

3. The equations for the variation of elements are

integrated numerically and the point representing

the impulse is followed across the metric body

until it reaches the boundary of the convex portion.

This boundary is formed by the end points of the

bitangents composing the developable surfaces

which cover the concave portions of the metric body.

55
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4. When the boundary of the convex portion is crossed,

the impulse is terminated and the magnitude of that

impulse is fixed.

5. The next impulse used is the one represented by the

point at the other end of the bitangent. With this

Impulse, steps 3, 4, and S are repeated.

It may be noted that whenever a tangential impulse satisfies

the necessary condition, it continues to do so until escape velocity

Is reached. As pointed out previously, a tangential thrust is a

possible optimum only when the velocity vector Is horizontal.

It should be clear from the construction of the improved

metric body that a connection between two impulses can be

optimal only If the connection is between impulses represented

by the opposite endpolnts of a bitangent In a developable surface

on the improved metric body. First of all both impulses must be

represented throughout by points in the convex portion of the metric

body. If at the junction either one of the impulses lies in the

interior of the convex portion of the metric body, then by the

insertion of a third impulse across the connection with the other

impulse it wlll be possible to reduce the characteristic velocity

of the maneuver. This is evident from the fact that the arcs

representing the two impulses in configuration space meet at an

angle other than 180 degrees. Wlth full freedom to move one of



57

the impulses in any direction, this corner can easily be cut. At the

Junction, if both impulses are on the boundary, but not on the same

bitangent, then the corner can be cut, though more than one

additional impulse may be required. This is all inherent in the

construction of the improved metric body, which is completely

cony ex.

The net result of the above is that two impulses can be

joined in an optimal fashion only if at the junction they are repre-

sented by points on the metric body at opposite endpoints of a

bitangent member of one of the developable surfaces, or if one

represents simply a continuation of the other. This is, in effect,

a corner condition for this problem. It is a requirement of the

type which permits corners as long as they are of a particular class.

If the original body were entirely convex, then no corners at all

would be permissible. The presence of the concave portions which

must be made convex makes permissible this one class of corner.

Thus, a multiple impulse arc in this configuration space

may possibly be optimal only if all the corners between impulsive

arcs are of this bitangent type, and if all of the arcs themselves

satisfy the previously discussed necessary condition for optimal

impulses.

There is one maneuver in the large _.,hich, because of its

simplicity, should be used as a check against any maneuver



regardless of the number of impulses used. This is the four

impulse transfer between elliptical orbits consisting of an escape

from periapsis of one orbit, entry at periapsis of the final orbit,

and two negligible impulses at infinity to provide the proper

orientation 10,11. If this maneuver between any two points of

the multiple or single impulse arc in configuration space has a

characteristic velocity less than that associated with following

the arc, then obviously the arc under consideration has been

defeated in the large, The four impulse transfer can then replace

all or part of this arc at a savings in characteristic velocity.

The characteristic velocity of the four impulse transfer

between two orbits can readily be calculated from the expression

for the impulse required to transfer at the periapsis of an ellipse

to a tangential parabolic escape trajectory,

58

rain AUesc. = (u escape - U)periapsi s

(53)

' I ]rain aUesc. - [_(1 - e)] l/z 2 - (211 + e]) l/z

The characteristic velocity of the four impulse transfer between two

orbits is the sum of this qusntity for each of the two orbits.
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III. RESULTS
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a) Results of Computations

The computations, carried out as previously described, yield

their results in two forms. The set of impulses specified by a given

position and direction but of infinitesimal magnitude which satisfy

the necessary condition for optimality is determined, and also the

pairs of endpoints of bitangents corresponding to permissible corners

are found.

For the final results it is natural to use %, the angular

position on the ellipse measured from periapsis with the attracting

body as vertex, and 4", the angle measured up from the local

horizontal, to describe the position and direction of an impulse

(Figure 7). The shape of the metric body is dependent only on the

eccentricity e. Therefore, all infinitesimal impulses which satisfy

the necessary condition for optimality are represented by points in

the three space _*,8,e. It is found that these points, which

correspond to all points lying on convex portions of all metric bodies

in the configuration space, form a compact region in the space 4*, 8, e.

This region is illustrated in Figure 16. The region has polar symmetry

in planes parallel to the 4*8 plane, so the entire region can be

represented by drawing only the part for 0 < 8< 180°o

The bounding surface of this region represents the points on

the metric body separating the convex and concave portions° These

points are the endpoints of the bitangents used to render the original
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metric body convex. In Figure 16 the upper boundary, the farther from

the 8e plane, represents the endpolnts of the bitangents forming the

top or the bottom developable surfaces, The boundary nearer the 8e

plane corresponds to the endpoints of the bitangents forming the mantle

of the metric body. This may be better visualized by referring to the

improved rre tric body in Figure 12.

A useful means of presenting this region is to display cross

sections of the region produced by planes of constant eccentricity, e o

This is done in Figures 17a through 17io The cross sections are

calculated for e varying from 0 to .9 in steps of one-tenth. From

these figures the directions of impulse 4" which satisfy the necessary

condition for optimality for a given position 8 on an ellipse of

eccentricity e can easily be read° In these figures 4" must be such

that the point (@*,@,e) lies on or between the two lines drawn. These

lines are the traces of the boundaries of the region described in

Figure 16o

Once an impulse of direction

from an initial orbit of eccentricity e

4" and position @ originating

is selected so that with a

sufficiently small magnitude it satisfies the necessary condition

for optimality, the obvious next step is to determine to what magni-

tude this impulse can be continued and still satisfy this necessary

condition. Throughout an impulse @* remains constant. Therefore,

as the infinitesimal metric body moves along the arc in configuration
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space produced by the continuation of this impulse, the point in

(_*, 8, e) space representing the forward point where the arc pierces

the metric body moves in a plane of constant _;*. For the purpose

of determining at what magnitude an impulse ceases to satisfy the

necessary condition of optimality it is, therefore, convenient to

present the region in Figure 16 by slicing it along planes of constant

_*.

Figures 18a through 18j depict cross sections of constant _*
E

of this region for _* from 0 to 20 degrees in steps of 2 deg'rees.

The cross section for _* equal to zero is simply the e axis, the @

axis, and a line parallel to the e axis at @ equal to 180 degrees, as

can be readily seen from Figure 16o As noted previously, this is just

the group of the Hohmann type of transfers o An impulse in this group

can be continued until escape velocity is attained without ever

ceasing to satisfy the necessary condition for optimality.

In these figures only those points (_*, @ ,e) lying on or between

the two lines represent impulses which, for a sufficiently small

magnitude, satisfy the necessary condition° As these figures are

drawn, the lower line represents points on the boundary of the top or

bottom developable surfaces of the metric body, while the upper line

represents points on the boundary of the mantle, or side developable

surface of the metric body.

The pairs of endpoints of bitangents corresponding to
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permissible corners in multiple impulse arcs are given in Figures 19

and 20. These pairings are given by curves of constant e drawn on

a graph which has two 8 axes, one representing the e value at one

end of the bitangent, the other representing the e value at the other

end of the bitangent. These curves are just level curves of a surface

in the space of (e, 81, 82). Figure 19 represents the_top and bottom

developable surfaces. Figure 20 represents the side developable

surface. It should be noted that the roles of 81 and 82 are

completely interchangeable.

With every point from the curves in these figures are

associated the two values of 8, one from each axis. Associated

with each of these values of 8 is a value of 4" obtained from the

curves in Figures 17a through 17i.

.... From Figure 19 for the top or bottom developable surfaces

a set (e,81,82) is taken to the proper Figure 17 determined by e,

and for 81 and 82, _1 and _ are read from the upper line, The

left-hand scale is used for the top developable surface of the metric

body, the right-hand scale is used for the bottom developable surface,

Similarly, from Figure 20 for the mantle of the metric body

a set (e,81,82) is taken to the Figure 17 determined by e, and

corresponding to 81 and 82 4" *, I and _ are read from the lower

line. The top edge of the mantle is read on the left-hand scale, the

bottom edge is read from the right-hand scale °



In summary, one has two simply connected surfaces in the

space (e, %,, 82), and two corresponding simply connected surfaces

in the space (_*,@,e) which form the boundary of a compact region

representing all infinitesimal impulses which satisfy the necessary

condition for optimality. Every point on one of the surfaces in the

space (e,%1,82) has two associated points on the corresponding

surface in the space (_*,8,e) o This association provides the pairs

(_, 81), (_,8 2) which are endpoints of the bitangents of the

developable surfaces of the metric body.
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Upper surface (solid lines) represents the boundary of the top

and bottom developable surfaces.

Lower surface (dashed lines) represents the boundary of the

side developable surface, the mantle.

Figure 16. The region satisfying the necessary condition.



0

0

0

to

,,"'t

o

_-4 0 0

•,'_ (D

0

_o_

_oo..Q ,.Q

O4 tO
0 0

m _
-."_ _
• 0

•--4 1:1

0 0

o4-4 _

II

0

p,.

I+
_. co

//,,
/i-

-- 0

+1

+1

o

+1

o

_m

o

I +'
t-

-I f _

+1

I I o

o
+1

t_

o

°_-.t

0
-r-I

0

0
_.4

0
°F.,I

.r.,t

0
0

tO

0
0
0

o

-,--I

co

0
-,'4

0

-_"l

0

0
-_-.t
4-)

o
0

_2

o

°r..I

66

i-; !



/

II

G)

+I +I

I+

,-M

6?



II

I+ I+ I+ I+ _ I+

+I

+1

I
o

+1

\

+1

I

+1

I

+1

o

+1

0

+1

Q.

+1

o

0

-w-I

68

_, ,L ¸



II

I÷ I÷ I+ I+ _ I+ I+ _

+I

+I

+I

+I

_ _1 +I

,---4 CO _ "_ 0,,I 0

+I +I +I +I +I +I

(I)

-r-I

r._

69

.... _,



I,t")

II

_1_
c.D

I+
I

I

kO

+1

_D
_D

I+
I

I+ ":1t+ I+ ,_1+ I+
I I I

/

/
/

/
/

,,y

/

cO O

I+ I+

+1

u_

+1

+1

I

_14 e,t

+1 +1

O

+1

m

O
ko

+1

-Ill

70 i!_i _i ¸¸



II

.Ic

-I¢

I+ I+ I+ I+ 1+ I+ I+ I+ I+ I+ o
I I I I I I I I .._ ,.-,

S_ ÷l

jJ_ -
J J -

J 0

• jf j

• +1

/ Y -

+1

1 ÷,

0

+1

0 GO LO 0

+1 +1 +1 +1 +1 +1 +1 +1 +1

71

,,-.I

o,,-I



RE*,

L_

II

r-4 iml

14-1 i÷

i i

t
o c_o

+1 ÷l

q_
c.o

I÷

c_
_0

I

_D

I÷

1

t_
rml

I÷

i

J

I÷ i÷ 14- I÷ I÷ _
QO cD

i i I f,-_111_ I
jJj _

J J
j -

ff _
Lt_

÷1

i I i I

_Q _l _ c_1
rml ira4 _

÷1 ÷1 +i

o
rml

÷1

÷i

q

0
c7_

÷1

co

+1

I I

+1

_f_ c_1 o

+1 +1

o
_o

÷1

o
or)

+1

o

[_

-i--I

72



II

I
+I

\
0

÷I

%.

I

N

+I

I

+I

I

+I .74-1

I
<,

,4-1 +I +I +I +I +I +I

73

A
i--I

Q)
I-I

:I



74

it')

I+ I+ I+ I+ I I+ I I+ i l-i. i I+ i I+ i I+ I+ i I+ I+ I+0_

I I I li_i +I

+1

o

o

+1

+1

\

I I I I I I I 1 I I

+I +I +I +I +I +I +I +I +I +I

o

+I +I

o

+I

Q

+I

o
or-I



\

O
QO

t_

÷1

O

÷1
II

,Ic__

O
C_

o
00

o iD • o o o

i -

_o

Q

C_

÷f

0

÷l

O

F-4

÷1

O

C_

÷1

0

÷1

0

C_

÷1

CD

C_O

75

O

O
°l-I

X

O
L_

O
oc--a

-i--g

0

r_

r_

-J--I

Cr_

c_

tD

O _
o_--_

o,-I _

o _
I_l ol-I

c_
i--4

©

ol-._



0

\
\

0
_0

r-4

I+

0

+l
II

o

o
Q0

+1

o

+l

0

+l

o

+1

o

+1

m

t_

+l

co

0

76



O

I+

@

+1

II

.!¢

\

J
f j

i / j

_J

o
cr_ Qo t_l c.O Lr_ q_lo

ll_ o Q fJ o o •

\
\

/
J

/

o

c_
o_

+1

+l

m

o
c_

+1

w

c_

÷1

o

+1

o

o

cD

77

QO

ur_



j _ k

_ o • o • o o o o

÷1

0 '

vml

÷1

c_

÷1

o
cr_

÷1

o
_o

÷1

m

o
c_

÷1

oo

r_

78



\

0
C_
L_
i---I

l+
ib

O

+1

li

,/
Jj

.jJJ

o

.---4

\

- fj
/

o • • o Q o

/

0
co

+1

_i

+1

+1

o
cr_

+1

c_

+1

o

+1

1

o o o

o

cI)

79

OD

-m--J



O
co
f.o

O

iml

÷1

II

o
o

\ \

/
Jj

Jz

cr) oo L_ _o
• e • •

/

• o cJ

o

÷1

÷1

o

im4

÷i

o

÷1

0
_o

+f

o

÷1

o

80

co
r-i



o
o

r_l

\

\ \
\

\

o _ Q

_o q_

o

÷1

o
Lt_

÷l

o

L'm4

÷1

o

÷l

o

÷1

o

÷1

o

_ o

@

¢.D
rm-4

I÷
ml.

O

÷1

II

o •

CD

81

°_-I



\

.JzJ

o
o') oo _ (.o

v_ o Q o o

J

/

+1

LO

0
LO

+1

0

(.o

I+

0

+1

!1

...--------_-

m

o

r--i

+1

o
c_

4-1

+1

o
co

+l

o

o

132

QO



\

/
I

o _

mm_

I

,\

I

/
O

I÷

O
co
Vm_

÷1

II

Lr_
u u o o

o

÷l

o
c_

÷1

o
c_

÷1

o
_o

÷l

m

o
ct_

÷1

o

cz_

83

o

oo



(1)

0
o

\

jj;
/J
I

Q o u • o

0
o

I+

0
o

+1

II

i
i

o o o G

+1

o

I--"4

+1

o

+1

o

+1

o
(,D

+1

o

+1

o

o

cD

84

Q

oo
,--t

-.--4



o
0

0
E_

1
o o
co t_.

+1 +1

CD

/

o
Qo

+1

cD

O_

O0

QO

LO

h, • '

0 0 0 0 0

+1 +1 +1 +_ ÷1 +]

CD

0

+1

o
cr_

+1

o
QO

+1

o
co

+1

o

o

+l

0

0
..Q

fG

0

_D

0

I-,

0

(D

-,-I

E
0

0

0

©

0

0

o

im

-r-I

85

0

O

(1)

OJ



86

[-_
2:

o

P-4

t._

.Q

r--t

;>

o G)

LO t_l -pI

+1

b
Cxl __

j " _o _
©

+1 x_

/ 0

__/ / +i

'////}h
0

7/#/ -
-r-4
0

'///i,<> ,
'i//j"," +, o_d0

°r.t
m_
0 _

o _

I+ I+ I+ I+ I+ I+ I_- I+ I+

E)



87

b) Sample Multiple Impulse Maneuver

In section II g) is discussed the generation of multiple

impulse trajectories which are composed of impulses which at all

points satisfy the necessary condition and which are joined by

corners of only the particular permissible class arising from the

bitangents. Here a specific example of such generation is presented.

The characteristic length L of equation (39) is set equal to

the value of the length of the major axis of the initial orbit, t
a"

The initial orbit is fixed by

e = .600
a

= i. 000
a

(54)

The direction and position of the first impulse is chosen to be

_ = i0° (constant)

(55)

= 150 °
l:a

As can be seen in Figure 21, this impulse is well within the region

which satisfies the necessary condition for optimality for sufficiently

small impulses.

The equations for the variation of the elements, equations (40),

(41), and (43), are integrated numerically using a simple Euler's
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technique with increments of the independent variable u from

equation (39) taken as o001, and the result is plotted in Figure (21)o

The arc representing the impulse is followed through the region in

which the impulse satisfies the necessary condition until it crosses

the boundary and enters the region of forbidden maneuvers o The

last point of this arc which still satisfies the necessary condition is

the point b on the boundary marked in Figure 21o This marks the

termination of the first impulse o

The magnitude of the first impulse is found to be

Au 1 = °437 (56)

At the termination of the first impulse the orbit is given by

e b = °523

_b = 2° 000

and the position on this new orbit is given by

(57)

= ° (SS)
_,b

The rotation of the major axis is found from equation (34) to be

_81 = 70o (59)

Since the top boundary line in Figure 21 is violated, the bitangent

to be used is a member of the side developable surface° Since the



first impulse is a forward impulse and, therefore, energy is being

added to the orbit and

boundary of the mantle.

increasing, this boundary is the top

Thus, the other end of the bitangent is

on the lower boundary of the mantle.

From the corner condition comes the requirement that the

next impulse be that represented by the opposite end of this

bitangent. From Figure 20, using @ equal to 80 degrees and e

equal to .523, one finds the position of the second impulse on

the orbit at b as

e = -138 ° (60)
,1,b

Using @ as - 138 degrees and interpolating between Figures 17e

and 17f for e equal to .523, one obtains the direction of the second

impulse.

@_ = 172 ° (61)

The lower curve is used since the bitangent involved is on the

mantle, ar_d the right-hand scale is read since the second impulse

is on the lower boundary of the mantle o

The junction between the first and second impulses chosen

as described satisfies the corner condition discussed in section

II g) o The two impulses at the junction point are represented by

opposite endpoints of a bitangent which is a member of one of the
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developable surfaces of the metric body at the junction point,

The second impulse is started with the position and direction

given by equations (60) and (61) o Between the end of the first

impulse and the beginning of the second impulse the vehicle is

simply coasting around the orbit it had at the end of the first impulse.

Thus, the orbit at the start of the second impulse is the same as at

the end of the first impulse, given by equation (57).

The numerical integration to find the elements of the orbit

during the second impulse is performed Bs before. The arc repre-

senting this impulse is shown in Figure 22. This arc crosses the

boundary and enters the forbidden region at the point d, marking

the termination of the second impulse as dictated by the necessary

condition.

At this point the magnitude of the second impulse is found to

be

(hu2) d = .450 (62)

The orbit at d is given by

e d = .920

td = 1o343

(63)

The position on the orbit d at the termination of this impulse is

given by



e2,d = - 173° (64)

The rotation of the major axis during the second impulse is found

from equation (34) to be

/_82 = 35 ° (65)

The total rotation of the major axis during the two impulses is

A81, 2 = 105 ° (66)

Using the corner condition as before, one obtains the

position and direction of the next impulse as

63 ,d = -24°

_3 = 174°

(67)

However, as is pointed out in sec".io_ II g), one maneuver

which always competes in the large is the four impulse transfer.

From equation (53) the minimum escape impulse from the initial orbit

is

(rain hues c)a o334 (68)

The characteristic velocity of the four impulse maneuver at some

intermediate ellipse, passed through during the multiple impulse

maneuver being generated, is this value plus the minimum escape
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impulse from the intermediate ellipse. If for any intermediate orbit

the four impulse transfer has a lower characteristic velocity than

the characteristic velocity used up to that point in the maneuver

being generated, then the multiple impulse maneuver has been

defeated by the four impulse maneuver and can be optimal no

farther.

Performing this comparison along the path generated, one

finds that at the point c the four impulse maneuver overtakes the

generated maneuver, and is cheaper from then on. Of course, the

four impulse maneuver and the generated maneuver must also be

compared between every pair of intermediate points. This proves

to be rather simple and no segment of the maneuver a to c can

be replaced.

At the point c the magnitude of the second impulse is

given by

(_uz) c = .134 (69)

and the minimum escape impulse is

(min _Uesc) c = .23 7 (70)

The characteristic velocity of the four impulse maneuver between

a and c, (68) plus (70), and the characteristic velocity of the

generated multiple impulse maneuver between a and c, (56)
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plus (69), are both equal to

au - .571 (71)
a,O

The orbit at the point c is given by

e = .654
C

¢ = 1.683
C

(72)

and the position in the orbit at the termination of the second impulse

is

- -155.5 ° (73)
@2,C

The rotation of the major axis during this maneuver is

-- 87.5 ° (74)AB1,2

In this manner a multiple impulse maneuver has been

generated beginning at the orbit a, given by equations (54), and

reaching any intermediate orbit on its path up to and including c,

given by equations (72). This maneuver everywhere satisfies the

necessary condition for optimality, has a Junction of two impulses

which satisfies the corner condition, and is cheaper than the

competing four impulse maneuver.
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c) Conclusion

This study produces a necessary condition which must be

satisfie_ by any impulsive ooplanar maneuver in order that it be an

optimal maneuver, and a corner condition which must be satisfied

when connecting impulses in order that the resulting multiple

impulse maneuver be optimal. Since any continuous thrust maneuver

can be made up _ an infinite number of infinitesimal impulses all

of which must satisfy the necessary condition for optimality and

must be Joined in agreement with the corner condition, these

results apply to all optimal paths, both impulsive and continuous

type s.

The necessary condition is that at every point of an impulse

its direct/on and position must be such that it is represented by a

point in the convex portion of the local metric body. The corner

condition is that if two distinctly different impulses are joined, they

must be represented at the Junction by opposite endpoints of a

bitangent member of one of the developable surfaces covering a

concave portion of the local metric body.

It is found that the direction of the impulses which satisfy

the necessary condition must always lie between the local horizontal

and the tangential directions. In fact, it is found that $*, or

rain [_;*+ 18001, is never larger than .53 of the magnitude of 7,

the local flight path angle. For a given eccentricity e and position
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8, the spread of allowable _*/Y is approximately .i to .2,

though it varies somewhat. This is in agreement with the excellent

work of Maroha111, which follows and extends the pioneering work

4
of Contensou , Marchal obtains a bound on the spread of the

allowable _*, and through asymptotic expansions gets approximate

17
expressions for the requirements for Joining two impulses. Moyer

also finds that a single impulse must be directed between the

horizontal and the tangential directions. Moyer uses a method

outlined by Breakwel118 which is based, in turn, on Contensou's

paper. Moyer's results are entirely numerical.

It should be pointed out that this study in no way restricts

the sense of circulation of the orbits considered. The results

presented are for orbits with the same sense of circulation, however,

the solution for a transfer between orbits with opposite circulation

is obvious. Since such a transfer involves passing through a state

of zero angular momentum, the solution will always be Marchal's

four impulse transfer.

In this present study a method is set forth for generating

multiple impulse maneuvers which satisfy the necessary condition

and corner condition of this analysis. These multiple impulse

maneuvers are checked against Marchal's four impulse transfer

between orbltsII. The multiple impulse trajectory is terminated

when the four impulse maneuver shows it to be nonoptlmal. In this
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manner a map of such multiple impulse arcs throughout the configur-

ations*space can be produced. This method for generating multiple

impulse maneuvers also leads to the continuous thrust optimals as

is discussed below. This intriguing area is not fully covered here,

but is left for future analysis.

This study indicates several areas which are of interest for

future investigations. The mapping of configuration space with

multiple impulse arcs generated from this necessary condition and

Joined subject to the corner condition may lead to a deeper insight

of this optimization problem, and to better generalizations of the

solutions.

It also appears possible to obtain a similarity law expressing

the necessary condition in terms of the local flight path angle. At

this time, unfortunately, only an empirical or approximate law seems

feasible.

This study extends from e equal to zero to e equal to .9,

though the results can be extrapolated a short distance farther.

Further study should be made of the metric body and the resulting

necessary and corner conditions in the vicinity of e equal to one.

Some work has been done on this ll,17,18 and it appears that the

situation changes considerably for almost parabolic orbits. Using

other methods, these investigators find for e greater than .925 there

are positions on the orbit from which no possibly optimal maneuvers
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are available.

In addition, there is the interesting possibility of finding

a bltangent member of a developable surface of the metric body

each of the endpolnts of which indicate a switch to the other after

an infinitesimal impulse° This would be the chattering entry to an

optimal intermediate thrust trajectory discussed by Robbins 7, and

i0
currently being investigated by several others o The effect of an

intermediate, or continuous, thrust program is simulated by an

infinite number of infinitesimal impulses, separated only by infini-

tesimal coasting arcs. Therefore, the positions in the orbit, given

by the values of 8 at each end of the bltangent, would have to be

separated only infinitesimally. This dictates that such bltangents

may be found only along the 45 degree llne in Figure 19.

Finally, this same technique can be extended to the same

problem without the coplanar restriction° The noncoplanar problem

requires a five dimensional configuration space, with three degrees

of freedom for the infinitesimal impulse which generates the medic

body. Thus, the metric body is a three dimensional hypersurface

imbedded in a five dimensional space° This metric body will be

rendered convex by three dimensional hyperplanes generating the

developable surfaces which cover the concave portions of the metric

bOdyo The contributions of visualization and intuition are reduced to

nearly negligible quantities° The tremendously increased complexity



of the noncoplanar problem points out the reason it has been only

briefly considered up until now. This is also the reason this

present analysis is strictly coplanar° However, the possibility of

such an extension cannot be neglected.
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